
International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 25
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

A Study on Block Matching Algorithms
for Motion Estimation in Video Coding

L.C.Manikandan, Dr.R.K.Selvakumar, IEEE Senior Member

Abstract— Block-based motion estimation methods are the most popular and widely used methods in video coding systems. Motion
estimation reduces temporal redundancies by exploiting inter picture correlation. This paper is a study of the existing block matching
algorithms used for motion estimation in video coding. The algorithms that are revealed in this paper are widely used in implementing
various standards ranging from MPEG1 / H.261 to MPEG4 / H.263. This paper also presents the computational complexity of the searching
points of different block matching algorithms.

Index Terms— Block Matching, Motion Estimation, Video Coding, Absolute Mean Difference, MPEG, H.264

—————————— ——————————

1 INTRODUCTION
IDEO coding is the process of compacting or condensing
a digital video sequence into a smaller number of bits.
Video coding involves a complementary pair of systems,

“encoder & decoder”. The encoder converts the source data
into a compressed form prior to transmission or storage and
the decoder converts the compressed form back into a repre-
sentation of the original video data. A video sequence typical-
ly contains temporal redundancy that is two successive pic-
tures are often very similar except for changes induced by ob-
ject movement, illumination, camera movement, and so on.
Motion estimation and compensation are used to reduce this
type of redundancy in moving pictures. The block-matching
algorithm (BMA) for motion estimation has proved to be very
efficient in terms of quality and bit rate. Therefore, it has been
adopted by many standard video encoders.

Through this study we reviewed the Block Matching Algo-
rithms(BMA), Full Search Motion Estimation[3], Cross-Search
Algorithm[1], Three Step Search Algorithm[4], New Three-
Step Search Algorithm[5], Four-Step Search Algorithm[8], Di-
amond Search Algorithm[9], Cross Diamond Search Algo-
rithm[10], Hexagonal Search[11], Adaptive Rood Pattern
Search[12].

2 BLOCK MATCHING ALGORITHMS
Block matching technique is the most popular and practical

motion estimation method in video coding. Fig.1 shows how
the block matching motion estimation technique works. Each
frame of size M x N is divided into square blocks B(i, j) of
size (b x b) with i = 1…., M/b and j = 1…..N/b. For each block
Bm in the current frame, a search is performed on the refer-
ence frame to find a matching based on a block distortion

————————————————
•L.C.Manikandan, Asst. Professor, School of CSE, Mar Ephraem College of
 Engineering & Technology, Marthandam – 629 171, Tamilnadu, India
 E-mail: lcmanikandan@gmail.com

•Dr.R.K.Selvakumar, Professor, Dept. of IT, Agni College of Technology,
 Chennai – 600 103, Tamilnadu, India. E-mail: rkselvam@rediffmail.com

measure (BDM). The motion vector (MV) is the displacement
from the current block to the best matched block in the refer-
ence frame. MV consists of is a pair (x, y) of horizontal and
vertical displacement values. Usually, a search window is de-
fined to confine the search. The same motion vector is as-
signed to all pixels within block.

Suppose a block has size b x b pixels and the maximum al-
lowable displacement of an MV is ±w pixels both in horizontal
and vertical directions, there are (2w+1)2 possible candidate
blocks inside the search window. The basic principle of block
matching algorithm is shown in Fig.2.

Fig.1 Block matching motion estimation

V

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 26
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig.2 Block matching method
A matching between the current block and one of the can-

didate blocks is referred to as a point being searched in the
search window. If all the points in a search window are
searched, the finding of a global minimum point is guaran-
teed.

2.1 Full Search Motion Estimation (FS)
In order to get the best match block in the reference frame,

it is necessary to compare the current block with all the candi-
date blocks of the reference frames. Full search motion estima-
tion calculates the sum absolute difference (SAD) value at each
possible location in the search window. Full search computed
the all candidate blocks intensive for the large search window.
Full search algorithm is illustrated in Fig.3.

Fig.3 Full search motion estimation

2.2 Cross Search Algorithm
The cross search algorithm (CSA) has been proposed by

Ghanbari in 1990. It is also a logarithmic step search algorithm
using a (X) cross searching pattern in each step. The basic idea
is still a logarithmic step search where in each search step only
4 locations are tested. The cross search algorithm can then be
described as follows:
Step 1: The current block and the block at (0,0), are compared

and if the value of the distortion function is less than a
predefined threshold T then the current block is clas-
sified as a nonmoving block and the search stops.
Otherwise go to Step 2.

Step 2: Initialize the minimum position (m, n) at m = 0, n = 0
and set the search step size p equal to half of the max-
imum motion displacement w, i.e., p = w/2.

Step 3: Move the coordinates (i, j) to the minimum position
(m, n), that is i = m and j = n.

Step 4: Find the minimum position (m, n) of the coordinates
(i, j) , (i - p , j - p) , (i - p , j + p) , (i + p , j - p) and (i
+ p , j +P).

Step 5: If p = 1 go to Step 6, otherwise halve the step size p,
and then go to Step 3.

Step 6: If the final minimum position (m, n) is either (i, j), (i -
1, j - 1) or (i + 1, j + 1) go to Step 7, otherwise go to
Step 8.

Step 7: Search for the minimum position at (m, n), (m - 1, n),
(m, n - l), (m + 1, n) and (m, n + 1). Here the end
points of a Greek cross (+) are searched.

Step 8: Search for the minimum position at (m, n), (m- 1, n -

l), (m - 1, n + l), (m + 1, n - 1) and (rn + 1, n + 1). In this
case the end points of a St. Andrew’s cross (X) are
searched.

CSA for a maximum motion displacement of w = 8
pels/frame is shown in Fig.4.

Fig.4 An example of the CSA search for w=8 pels/frame

In CSA almost 25% (one in every four) of the pels at the
boundaries are not searched.

2.3 Three Step Search Algorithm (TSS)
TSS algorithm was proposed by Koga et al. [2], this is a fi-

ne-coarse search mechanism. The TSS algorithm can then be
described as follows:
Step 1: It involves search based on 4-pixel/4-line resolution at

nine locations i.e. 9x9 search window, with the center
point corresponding to zero MV.

Step 2: It involves search based on 2-pixel/2-line resolution
i.e. 5x5 search window around the location deter-
mined by the first step.

Step 3: This is repeated in the third step with 1-pixel/1-line
resolution and a search window of 3x3. Step4: The last
step yields the MV.

The search pattern of TSS is shown in Fig.5.

Fig.5 Search pattern of three step search algorithm

2.4 New Three-Step Search Algorithm (NTSS)
NTSS [4] improves on TSS results by providing a center bi-

ased searching scheme and having provisions for half way
stop to reduce computational cost. It was one of the first wide-
ly accepted fast algorithms and frequently used for imple-
menting earlier standards like MPEG 1 and H.261. The NTSS
algorithm is described as follows.
Step 1: Totally points are checked including the central nine

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 27
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

points on the 3 x 3 grid and the eight neighboring
points on the 9 x 9 grid. If the minimum BDM point is
the search window center, the search will be termi-
nated; otherwise go to Step 2.

Step 2: If one of the central eight neighboring points on the 3
x 3 grid is found to be the minimum in the first step,
go to Step 3; otherwise go to Step 4.

Step 3: Move the small 3 x 3 search window so that the win-
dow center is the winning point found in Step1.
Search additional five or three points according to the
location of the previous winning point, then the
search will stop.

Step 4: Reduce the large 9 x 9 search window size by half and
move the center to the minimum BDM point in Step 1,
follow the searching process of Step 2 and Step 3 in
3SS.

Fig.6 shows two different search paths for finding motion
vector within 5 x 5 area.

Fig.6 Two different search paths for finding MV within 5 x

5 area in N3SS.

2.5 Four-Step Search Algorithm (FSS)
The FSS algorithm is summarized as follows:

Step 1: A minimum BDM point is found from a nine-checking
point’s pattern on a 5 x 5 window located at the center
of the 15 x 15 searching area as shown in Fig.7 (a). If
the minimum BDM point is found at the center of the
search window, go to Step 4; otherwise go to Step 2.

Step 2: The search window size is maintained in 5 x 5. How-
ever, the search pattern will depend on the position of
the previous minimum BDM point.
a) If the previous minimum BDM point is located at
the corner of the previous search window, five addi-
tional checking points as shown in Fig.7 (b) are used.
b) If the previous minimum BDM point is located at
the middle of horizontal or vertical axis of the previ-
ous search window, three additional checking points
as shown in Fig.7 (c) are used. If the minimum BDM
point is found at the center of the search window, go
to Step 4; otherwise go to Step 3.

Step 3: The searching pattern strategy is the same as Step 2,
but finally it will go to Step 4.

Step 4: The search window is reduced to 3 x 3 as shown in
Fig.7 (d) and the direction of the overall motion vector
is considered as the minimum BDM point among
these nine searching points.

Fig.7 Search Patterns of 4SS. (a) First Step,

 (b) second/third step, (c) second/third step, (d) fourth step

Two examples of 4SS are shown in Fig. 8 with different
search paths.

Fig.8 Two different search paths of 4SS

2.6 Diamond Search Algorithm (DS)
DS [9] algorithm employs two search patterns as illustrated

in Fig.10, which are derived from the crosses (×) in Fig.9. The
first pattern, called large diamond search pattern (LDSP),
comprises nine checking points from which eight points sur-
round the center one to compose a diamond shape. The se-
cond pattern consisting of five checking points forms a smaller
diamond shape, called small diamond search pattern (SDSP).

Fig.9 An appropriate search pattern support—circular area
with a radium of 2 pels.

The 13 crosses show all possible checking points within the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 28
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

circle.

Fig.10 Two search patterns derived from Fig.9

The DS algorithm is summarized as follows:

Step 1: The initial LDSP is centered at the origin of the search
window, and the 9 checking points of LDSP are test-
ed. If the MBD point calculated is located at the center
position, go to Step 3; otherwise, go to Step 2.

Step 2: The MBD point found in the previous search step is re-
positioned as the center point to form a new LDSP. If
the new MBD point obtained is located at the center
position, go to Step 3; otherwise, recursively repeat
this step.

Step 3: Switch the search pattern from LDSP to SDSP. The
MBD point found in this step is the final solution of
the motion vector which points to the best matching
block.

2.7 Cross Diamond Search Algorithm (CDS)
The DS algorithm uses a large diamond-shaped pattern

(LDSP) and small diamond-shaped pattern (SDSP), as depict-
ed in Fig.11.

Fig.11 Search patterns used in the CDS algorithm.

(a) CSP (b) LDSP and SDSP.

Below summarizes the CDS algorithm:
Step 1: Starting: A minimum BDM is found from the nine

search points of the CSP located at the center of search
window. If the minimum BDM point occurs at the
center of the CSP, the search stops. Otherwise, go to
Step (2).

Step 2: Half-diamond Searching: Two additional search points
of the central LDSP closest to the current minimum of

the central CSP are checked, i.e., two of the four can-
didate points located at (±1, ±1). If the minimum BDM
found in previous step located at the middle wing of
the CSP, i.e., (±1, 0) or (0, ±1) and the new minimum
BDM found in this step still coincides with this point,
the search stops. Otherwise, go to Step (3).

Step 3: Searching: A new LDSP is formed by repositioning the
minimum BDM found in previous step as the center
of the LDSP. If the new minimum BDM point is still at
the center of the newly formed LDSP, then go to Step
(4) (Ending); otherwise, this step is repeated again.

Step 4: Ending: With the minimum BDM point in the previ-
ous step as the center, a new SDSP is formed. Identify
the new minimum BDM point from the four new
candidate points, which is the final solution for the
motion vector.

2.8 Hexagonal Search (HEXBS)
The HEXBS algorithm is summarized as follows:

Step 1: The large hexagon with seven checking points is cen-
tered at, the center of a predefined search window in
the motion field. If the MBD point is found to be at the
center of the hexagon, proceed to Step (3) (Ending);
otherwise, proceed to Step (2) (Searching).

Step 2: With the MBD point in the previous search step as the
center, a new large hexagon is formed. Three new
candidate points are checked, and the MBD point is
again identified. If the MBD point is still the center
point of the newly formed hexagon, then go to Step
(3) (Ending); otherwise, repeat this step continuously.

Step 3: Switch the search pattern from the large to the small
size of the hexagon. The four points covered by the
small hexagon are evaluated to compare with the cur-
rent MBD point. The new MBD point is the final solu-
tion of the motion vector.

A hexagon-based search pattern is depicted in Fig.12.

Fig.12 (a) Large Hexagonal Block Search (HEXBS)
 (b) Small Hexagonal Block Search (HEXBS)

2.9 Adaptive Rood Pattern Search (ARPS)
The ARPS algorithm is summarized as follows:

Step 1: Compute the matching error (SAD centre) between the
current block and the block at the same location in the
reference frame.

Step 2: Align the center of ARP with the center point of the
search window and check it’s four search points plus the
position of the predicted MV to find out the current min-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 29
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

imum matching error (MME) point.
Step 3: Set the center point of the unit-size rood pattern (URP) at

the MME point found in the previous step and check its
points. If the new MME point is not incurred at the cen-
ter of the current URP, repeat this step; otherwise, the
MV is found, corresponding to the MME point identified
in this step.

ARPS algorithm search pattern is as shown in Fig.13.

Fig.13 Adaptive Rood Pattern

3. COMPARATIVE STUDY
Here we are categorizing the algorithms into nonlinear

method and linear method based on maximum searching
points. Most of the algorithms follow nonlinear approach. In
our survey CDS algorithm only follow linear search approach.
From this comparative study, we have found that the full
search (FS) takes larger number of search points. The Adaptive
Rood Pattern Search (ARPS) algorithms take a minimum
numbers of search points and gives better PSNR. Getting a
better quality image by reducing number of search points re-
mains a goal. The Table 1 shows the computational complexity
of the searching points.

TABLE 1

COMPARISON TABLE – MAXIMUM SEARCHING POINTS

Method Algorit
hm

Maximum
Searching

Time

Maximum number
of search points –

Window Size
W = 4, 8, 16

4 8 16

Non
Linear
Model

FS (2w + 1)2 81 269 1089
CS 5 + 4 log2w 13 17 21
TSS 1 + 8 log2w 17 25 33

NTSS [1+8 log2w] +
8 25 33 41

4SS 18 (log2(w/4))
+ 9 81 289 1089

DS 9+msx{5,4,3}*
log2w 19 24 29

HEXBS 7+3*log2w+4 17 20 23

ARPS 1+4*log2w 9 13 17
Linear
Model CDS 3 + 2w 11 19 35

The Table 2 shows the PSNR Performance evaluation of

various algorithms in different video streams.

Table 2
PSNR Performance evaluation

4. CONCLUSION
Block matching techniques are the most popular and effi-

cient of the various motion estimation techniques. In this pa-
per, an overview of some Block matching motion estimation
algorithms range from the very basic Full Search to the recent
fast adaptive algorithms like Pattern Based Search in H.264
CODEC has been discussed with their computational com-
plexity. As a consequence, the computation of video coding is
greatly reduced with ARPS.

REFERENCES
[1] M. Ghanbari, “The Cross-Search Algorithm for Motion Estimation”, Vol. 38,

No. I, pp 950-953, IEEE Transactions on Communications, July 1990.
[2] S. Immanuel Alex Pandian et al., “A Study on Block Matching Algorithms for

Motion Estimation”, Vol.3, No.1, pp 34-44, International Journal on Computer
Science and Engineering, Jan 2011.

[3] T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro, "Motion compen-
sated interframe coding for video conferencing," pp. G5.3.1-5.3.5, Pro. Nat.
Telecommun. Conf., New Orleans, Nov. 1981.

[4] Renxiang Li, Bing Zeng, and Ming L. Liou, “A New Three-Step Search Algo-
rithm for Block Motion Estimation”, IEEE Trans. Circuits And Systems For
Video Technology, Vol 4., No. 4, pp. 438-442, August 1994.

[5] A. Puri, H. M. Hang and D. L. Schilling, “An efficient block matching algo-
rithm for motion compensated coding,” Proc. IEEE Int. Conf. Acoust., Speech,
and Signal Proc., pp. 1063-1066, 1987.

[6] Deepak Turaga, Mohamed Alkanhal, “Search Algorithms for Block-Matching
in Motion Estimation” Spring, 1998.

[7] Lai-Man Po Wing-Chung Ma, “A Novel Four-Step Search Algorithm for Fast
Block Motion Estimation”, vol. 6, No. 3, pp. 313-317, IEEE Transactions on
Circuits Syst. Video Technol., June 1996.

[8] Shan Zhu and Kai-Kuang Ma, “A New Diamond Search Algorithm for Fast

BMA’s
Video Sequences

Football Foreman
FS 26.78 37.98
CS 24.82 32.35
TSS 26.30 31.92
NTSS 25.97 37.33
4SS 23.51 32.49
DS 26.49 37.67
CDS 25.78 34.26
HEXBS 24.66 31.42
ARPS 26.48 37.42

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 30
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Block-Matching Motion Estimation”, Vol. 9, No. 2, pp 287-290, I EEE Transac-
tions on Image Processing, FEBRUARY 2000.

[9] Chun-Ho Cheung and Lai-Man Po, “A Novel Cross-Diamond Search Algo-
rithm for Fast Block Motion Estimation”, Vol. 12, No. 12, pp 1168-1177, IEEE
Transactions on Circuits and Systems for Video Technology, December 2002.

[10] Ce Zhu, Xiao Lin, and Lap-Pui Chau, “Hexagon-Based Search Pattern for Fast
Block Motion Estimation”, Vol. 12, No. 5, pp 349-355, IEEE Transactions on
Circuits and Systems for Video Technology, May 2002.

[11] Yao Nie, and Kai-Kuang Ma, “Adaptive Rood Pattern Search for Fast Block
Matching Motion Estimation”, Vol 11, no. 12, pp. 1442-1448, IEEE Transac-
tions on Image Processing, December 2002.

[12] Aroh Barjatya, “Block Matching Algorithms For Motion Estimation”, Student
Member, IEEE, DIP 6620 Spring 2004.

[13] Chandra Sekhar. CH, J.V.K. Ratnam, “Comparison of Fast Block Matching
Algorithms for Motion Estimation”, pp 1609-1618, International Journal of
Electronics and Computer Science Engineering.

[14] M. Ezhilarasan and P. Thambidurai, "Simplified Block Matching Algorithm
for Fast Motion Estimation in Video Compression " vol. 4, pp. 282-289, Journal
of Computer Science, 2008.

[15] A. Barjatya, "Block Matching Algorithms for Motion Estimation," DIP 6620,
Spring 2004.

[16] Kwon Moon Nam, Joon-Seek Kim, Rae-Hong Park "A Fast Hierarchical
Motion Vector Estimation Algorithm Using Mean Pyramid" Vol.5, No.4, pp
344-351, IEEE Transactions on Circuits and Systems for Video technology,
August 1995.

[17] MPEG-4 Video Verification Model (Version 14.0), ISO/IEC
JTC1/SC29/WG11 N2932, Oct. 1999.

[18] M. J. Chen, L. G. Chen, and T. D. Chiueh, “One-dimensional full search mo-
tion estimation algorithm for video coding,” Vol. 4, pp. 504–509, IEEE Trans.
Circuits Syst. Video Technol., Oct. 1994.

[19] S. Metkar and S. Talbar, “Motion Estimation Techniques for Digital Video
Coding”, V0l 12, pp 64, SpringerBriefs in Computational Intelligence, 2013.

[20] B.G. Kim, S.T. Kim, S.K. Song and P.S. Mah, “Fast-adaptive rood pattern
search for block motion estimation”, Vol.41, No.6, ELECTRONICS LETTERS,
August 2005.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Block Matching Algorithms
	2.1 Full Search Motion Estimation (FS)
	2.2 Cross Search Algorithm
	2.3 Three Step Search Algorithm (TSS)
	2.4 New Three-Step Search Algorithm (NTSS)
	2.5 Four-Step Search Algorithm (FSS)
	2.6 Diamond Search Algorithm (DS)
	2.7 Cross Diamond Search Algorithm (CDS)
	2.8 Hexagonal Search (HEXBS)
	2.9 Adaptive Rood Pattern Search (ARPS)

	3. Comparative Study
	Comparison Table – Maximum Searching Points
	4. Conclusion
	References

